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Abstract. Vibrational properties of quasi-lattices constructed by the Fibonacci substitution 
rule are studied using the integrated method for solving the eigenvalue problem of a tri- 
diagonal matrix. The ‘Cantor-like’ integrated density of states and its self-similar charac- 
teristics are given. The vibration eigenstates exhibit various interesting phenomena. We also 
examine the influence of some factors on the vibrational properties. 

Following the discovery of quasi-crystals, some artificially fabricated one-dimensional 
quasi-crystals, such as GaAs-AlAs, Si-GeSi Fibonacci superlattices have been grown 
by molecular beam epitaxy (MBE) and have been investigated using x-ray and Raman 
scattering measurements [ 1,2].  Many theoretical calculations of vibrational properties 
in one-dimensional Fibonacci chains have also been presented [3]. In these calculations, 
two force constant KA and KB are arranged according to the Fibonacci sequence and all 
masses are assumed to be identical. This system can be easily solved using transfer 
matrix techniques. The vibrational spectra and amplitudes show some very interesting 
characteristics. As is known for the periodic one-dimensional chain, vibrations with two 
masses mA and mB are different from those with two force constants KA and K B .  In this 
paper, we consider a one-dimensional version of the quasi-crystal in which two masses- 
the masses of atom A and atom B-follow the Fibonacci sequence. Using the integrated 
method for solving the eigenvalue problem of a tri-diagonal matrix, which has been 
developed recently, we study the integrated density of states (IDOS) of quasi-crystal 
chains of various lengths and discuss their different eigenstates in detail. Some features 
are studied for the first time. We also examine the influence of various factors such as 
the atom number of the system, the ratio of the mass of atom A to the mass of atom B, 
the force constant between atoms, disorder in the usual atom arrangement, and doping 
by impurities on the vibrational properties. 

The Fibonacci sequence ABAABAB . . . is defined by the production rules A + AB 
and B + A ,  with A as the first single element of the first generation. We find that there 
are certain symmetries in the Fibonacci sequence, i.e. the ith element is the same as the 
(F, - 1 - i)th element, where F, is the Fibonacci number of nth generation ( F ,  = 1, 
F ,  = 2, F,,, = F, + Fn-l). The ratio of numbers of A elements to B elements tends to 
z = (6 + 1)2, the golden ratio. The Fibonacci sequence atomic chain has the following 
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vibration equation within the framework of nearest-neighbour interactions and the 
harmonic approximation: 

m n  d2Xn/dt2 =Kn,n+lXn+~ + Kn,n-IXn-I - (Kn,n+I + Kn,n-l)Xn (1) 

where m, is the mass of the nth atom, which is mA or mB according to its position in the 
Fibonacci sequence, X n  is the displacement of the nth atom from its equilibrium position 
and Kn,n21 are the force constants coupling neighbouring atoms. Let Xn(t) = 
U,, exp( -iw2t)/mn and divide both sides of equation (1) bym,; then equation (1) becomes 

- w 2  un = ( K n , n +  1 I V m n  + I m n  >un + 1 + (Kn,n - I IVmn - 1 m n ) U n  - 1 

- [(Kn,n+I + Kn,n-l)/mnIUn (n  # 1, N). ( 2 )  

Hlu)  = w 2 / u )  (3) 

Equation (2) can be rewritten in the form of a matrix as 

where H is a symmetric tri-diagonal matrix, 1 U )  is the eigenvector corresponding to the 
eigenfrequency w2.  In the free-end boundary condition, we have 

H11 = K12/m, HNN = K N . N - i / m N  (4) 
where N is the total number of atoms. There are many methods of solving this kind of 
eigenvalue problem, but we have found that the integrated method for solving the 
eigenvalue problem is a simple and very efficient method. Here we only give the essential 
formulations for this method. The details of the derivation can be found in [4]. 

If q(x )  denotes the number of real negative eigenvalues of a matrix, then 
N N 

V ( H  - w z ~ )  = C. q(un)  = E q(Vn) ( 5 )  
n = l  n = l  

wheie 

U1 = HI,  - 0' 

U ,  = H,, - w2 - Hn,n  - 1  U,' 1 H n  - I , n  

V n  =Hnn - w 2  -Hn,n+1Vi:1Hn+I,n 

( n = 2 ,  . . . ,  N )  

(n  4 N - 1). 

V N  = H,VN - w 2  

Equation (5) states that the number of eigenvalues of the matrix H which are smaller 
than a real number w 2  can be found from the signs of N scalar equations for U n ( w 2 )  or 
V n ( w 2 ) .  In our system, the IDOS is obtained easily from 

D ( w 2 )  = q(H - 0~1). (6) 
Using the trial-and-error method, the eigenvalues can be obtained in the following 
way. If we wish to obtain an eigenvalue which is greater than a certain value, we can 
choose a small interval; let 

A = q[H - ( A  + AA)I] - q[H - AI].  (7) 

If A < 1, this means that there is no eigenvalue between A and A + AA and, if A > 1, 
there are more than one eigenvalue. So we must increase AA or decrease AA to make 
A = 1. Thus, the eigenvalue must satisfy A < w 2  < A + AA. We can say that w 2  = 
A + AA/2 so long as AA is sufficiently small. Otherwise we make AA = AA/2 and repeat 
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Figure 1. The lDOSfOI‘ Fibonacci chains of A, 987; B,  610; and C, 377 atoms. 

the above procedure. In this way we can obtain the eigenvalues of H to any desired 
degree of accuracy. 

Now we calculate the eigenvectors. The eigenvector I U )  can be expanded in terms of 
the basic vectors { 1 i)}, i.e. 

N 

where { 1 i)} represent (100 . . .), (010 . . .), etc. Then the values of the functions 

E ,  = U ,  + V ,  - ( M , ,  - w ‘ )  n = 3 , .  . . , N  (9) 

are calculated. We choose the minimum value E/  in a set of {E,}; then we have 

b/  = 1 

bl-1 = -H/-l,l/UI-l 

b / -  r = -HI- r , /  - r + 1 b / -  r +  1 /U,-  r 

b/+l = -Hl+I,I/VI+l 

r = 2 . .  . 1 -  1 (10) 

b ~ +  r = -HI+ r , / +  r -  1 b /+ r -  1 /V/+ r r =  2 . .  . N -  1. 

Thus lu) can be found. In the process of determining the eigenvalue W’ of H the 
quantities {V,} and {U,} have already been calculated in equation (5). In this sense 
the determination of the eigenvector is almost accomplished simultaneously with the 
determination of the eigenvalue and they have the same accuracy. After normalising 
and considering the mass factor, we obtain the vibration amplitudes of the atom chain. 

The IDOS for the systems with 377,610 and 987 atoms, when mA = 1.0, mB = 0.5 and 
all K,,n = 1 . O ,  are displayed in figure 1. The numbers 377,610 and 987 are the Fibonacci 
numbers F, of the nth generation for n = 12, 13 and 14; one unit on the abscissa means 
w 2  = 1.1 for the convenience of calculation. These curves are essentially identical. They 
are ‘Cantor like’. In the quasi-continuous region there are many small gaps, i.e. flat 
portions in spectra. It is remarkable that the gaps occur at the Fibonacci numbers 
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Figure 2. A few modes for a one-dimensional quasi-crystal chain of 987 atoms 

and at their combinations. For example, the three larger gaps start at F l - 2 ,  F l - l  and 
Fl- l  + F,-4andendatFl-2 + l , F l p 1  + l,Fl-l + F I - 4  + lifthechaincontainsF,atoms. 
There is only one state in the gap, which is called the gap state. Careful examination of 
our results shows that the spectra are self-similar, especially in the high-frequency 
region. 

If the atom number in the chain is not a Fibonacci number, what is the integrated 
density? We examine chains which have 300,600 and 800 atoms separately. The IDOSS 
have the same form as for chains with a Fibonacci number; gaps occur in some frequency 
regions but correspond to more complex combinations of Fibonacci numbers. So we can 
conclude that the characteristics of the IDOSS are determined from the former structure 
in chain; when the number of atoms increases, the eigenstates fill in the frequency band 
of spectra. 

Figure 2 illustrates the amplitude of some eigenstates. The mode numbering is from 
the lower- to the higher-frequency mode. Modes2 and 10 are eigenvectorscorresponding 
to the low-frequency or long-wavelength portion of the spectra, which are affected little 
by the microscopic structure of the chain. They are similar to those in periodic systems. 
The modes 378, 611, 700 and 755, which are in the gap, are strongly localised modes. 
Their localised positions are different. In our case, except for mode 755 which is localised 
at the left-hand end of the chain, the other modes are localised at the right-hand end. 
As we know, the periodic lattice has an absolutely continuous spectrum and extended 
eigenstates, whereas the random lattice has a pure point spectrum and localised eigen- 
states. Now in our quasi-crystal system, besides the extended and localised states, there 
are also modes 300,377,379,610,612 and 845, which can be called critical states. The 
states at the gap edges are especially interesting. For example, the 377th, 610th and 
845th states, which are located at the left-hand gap edges, are symmetric and the 379th 
and 612th states, which are located at the right-hand gap edges, are almost asymmetric. 
There is a dramatic change in the nature of the modes across the band edges. This 
character is similar to that in the periodic lattice to some degree. We also find that the 
number of local maxima in the non-gap state is equal to the mode numbering. 



Phonon behaviour of I D  quasi-lattice 9537 

Now we consider some influences of various factors on eigenvectors. If mB = 0.7 
replaces mB = 0.5 but mA still equals 1.0, the maximum frequency decreases from 
5.751 907 3 to 4.709 984 5; the eigenvalues correspondingly decrease, e.g. mode 377 
eigenvalue changes from 1.336 515 4 to 1.310 237 9 and so on. If the force constant 
decreases, e.g. KAA = 1.0, KAB = 0.7, K B B  = 0.5 (here KAB means the force constant 
between atom A and atom B), the frequency maximum changes to 4.167 319 7, 377th 
eigenvalue decreases to 0.942 127 4. The other characteristics of spectra do not vary in 
both the above conditions. 

The influences of the length of the chain on the local states are also interesting. As 
we know, the left-hand structures of a quasi-crystal chain of different lengths are 
identical; so all gap states, which are localised at the left-hand end of the chain have 
nothing to do with the length of chain, even if the number of atoms in the chain is not a 
Fibonacci number, e.g. N = 900. Nevertheless, the local states, which are localised at 
the right-hand end of the chain containing F, atoms are the same as those in the chain 
containing F, - 2  atoms because the right-hand ends of the F, and F,-* sequences are the 
same; for example, for w2 = 1.367 672 839, this state is localised in the 375th atom and 
nearby in the chain of 377atoms, i.e. the vibrational amplitudes of atoms reach a 
maximum value in the last atom but one. If the chain contains 987 atoms, this state also 
localises the last atom but one and nearby. 

If some disorder occurs, e.g. the 450th atom which is mB according to the Fibonacci 
sequence, is replaced mistakenly by mA, we found that eigenvalues of non-local states 
are slightly lower; this is because mA is larger than mB. The 378th and the 755th modes 
(the former is located at the right-hand end of chain and the latter at the left-hand end) 
do not vary, and the 611th mode, which is located at the right-hand end originally, is 
now located in the middle of the chain. The local 844th mode now becomes the 845th 
mode. When the disorder is at the local point of the local state, the local state can change 
to a non-local state. If the 449th, 450th and 451st atoms all change, the 377th mode has 
the same property as 378th mode in a regular Fibonacci chain. The 755th mode remains 
invariable. This mode can change when the second atom is changed to mA. If the lighter 
atom, e.g., m = 0.3, replaces the 450th atom, all eigenfrequencies decrease. The IDOSS 
do not obviously change in all above conditions. 

As we know, in the perfect diatomic chain, each unit cell has two atoms of masses 
mA and mB. Their vibration amplitudes are uA and uB; if U J U B  > 0 in a mode, we can 
say that this mode is acoustic, but otherwise it is optical. However, in the quasi-crystal 
chain, as there are many disordered systems, we cannot strictly distinguish between 
acoustic and optical branches. Each mode is a so-called mixed mode. We define U; = 
$[U, + i ( u n + l  + U,-,)] and U: = +[U, - + ( u , + ~  + U,- , ) ] .  If U; = U, and U :  = 0 for all n 
in a mode, this mode can be considered mainly acoustic; if U ;  = 0 and U: -- U,, it is 
mostly optical. We investigate a mode in our system and find that the mode is almost 
acoustic in the very-low-frequency region, e.g. in the 10th mode all U: = 0. The acoustic 
component decreases and the optical component increases on increasz in the vibration 
frequency. We do not consider how to determine the relative proportions of the acoustic 
component and the optical component in this paper. 

Using the same method, we can easily study a perfect diatomic chain and a perfect 
monoatomic chain. We can also investigate the influences of impurities as has been 
studied in other work. Further comparison between the vibration spectra of periodic, 
disordered and quasi-crystal chains will be published elsewhere. 

We also examine a large-Fibonacci-number atom chain, say N = 17 711; the basic 
properties of vibration are the same as for N = 987. The CPU time for obtaining an 
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eigenvalue and an eigenvector is only 1 min 43 s using a Burroughs 6935. It is almost 
impossible to solve a 17 711 x 17 711 matrix using the standard method. 

In summary, we have used a new method to study one large one-dimensional quasi- 
crystal which is a little more complex than a quasi-crystal only having different force 
constants. Because Raman scattering has been used to study longitudinal acoustic 
phonons propagating parallel to the growth axis in the quasi-periodic superlattices, our 
linear chain offers a semi-quantitative analysis model. Work is under way to study our 
model in more detail and to compare it directly with experimental results. 
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